Back to Glossary Index

Dagster Data Engineering Glossary:


Data Archiving

Move rarely accessed data to a low-cost, long-term storage solution to reduce costs. Store data for long-term retention and compliance.

Data archiving definition:

Data archiving, in the context of modern data pipelines, refers to the process of moving data that is no longer actively used to a separate storage system for long-term retention. Data archiving helps in reducing primary storage costs, enhancing system performance, and ensuring compliance with data retention policies and regulations. The archived data is indexed and has search capabilities, so it can still be easily accessed and retrieved if needed. It's a critical part of a data lifecycle management strategy and is usually one of the last stages in a data pipeline.

Data archiving strategies in data engineering:

Archiving strategies are important to ensure that data is stored efficiently and can be retrieved when needed. Here are some main archiving strategies used in data engineering specific to data pipeline design:

  • Cold storage: This strategy involves storing data that is infrequently accessed, and therefore can be stored on cheaper, slower storage devices. This is often used for archival purposes, where the data needs to be retained for a long period of time, but is not accessed frequently. Examples of cold storage solutions include Amazon Glacier and Google Cloud Storage Nearline.
  • Partitioning: This strategy involves dividing data into smaller, more manageable chunks called partitions, which can be stored separately. This can help to improve query performance by allowing data to be queried in parallel. For example, data can be partitioned by date, region, or any other relevant attribute.
  • Compression: This strategy involves reducing the size of data by compressing it, which can help to reduce storage costs and improve transfer times. There are many compression algorithms available, such as gzip and bzip2, which can be used depending on the type of data being compressed.
  • Incremental backups: This strategy involves backing up only the changes made to data since the last backup, rather than backing up the entire dataset each time. This can help to reduce the amount of data that needs to be backed up, and also reduce backup times.
  • Versioning: This strategy involves keeping multiple versions of data over time, which can be useful for auditing purposes or for keeping track of changes made to the data. Versioning can be achieved through techniques such as snapshotting or using version control systems.
  • Data archiving to the cloud: Cloud providers like AWS, Azure and GCP offer data archival solutions where data can be transferred and stored securely in their cloud infrastructure. This can provide cost savings, flexibility and durability compared to on-premise solutions.

These are some of the main archiving strategies used in data engineering to ensure that data is stored efficiently and can be retrieved when needed. Choosing the appropriate archiving strategy for a particular data pipeline will depend on factors such as data access patterns, data size, cost, and retention requirements.


Other data engineering terms related to
Data Management:
Dagster Glossary code icon

Append

Adding or attaching new records or data items to the end of an existing dataset, database table, file, or list.
An image representing the data engineering concept of 'Append'
Dagster Glossary code icon

Augment

Add new data or information to an existing dataset to enhance its value.
An image representing the data engineering concept of 'Augment'

Auto-materialize

The automatic execution of computations and the persistence of their results.
An image representing the data engineering concept of 'Auto-materialize'

Backup

Create a copy of data to protect against loss or corruption.
An image representing the data engineering concept of 'Backup'
Dagster Glossary code icon

Batch Processing

Process large volumes of data all at once in a single operation or batch.
An image representing the data engineering concept of 'Batch Processing'
Dagster Glossary code icon

Cache

Store expensive computation results so they can be reused, not recomputed.
An image representing the data engineering concept of 'Cache'
Dagster Glossary code icon

Categorize

Organizing and classifying data into different categories, groups, or segments.
An image representing the data engineering concept of 'Categorize'
Dagster Glossary code icon

Checkpointing

Saving the state of a process at certain points so that it can be restarted from that point in case of failure.
An image representing the data engineering concept of 'Checkpointing'
Dagster Glossary code icon

Deduplicate

Identify and remove duplicate records or entries to improve data quality.
An image representing the data engineering concept of 'Deduplicate'

Deserialize

Deserialization is essentially the reverse process of serialization. See: 'Serialize'.
An image representing the data engineering concept of 'Deserialize'
Dagster Glossary code icon

Dimensionality

Analyzing the number of features or attributes in the data to improve performance.
An image representing the data engineering concept of 'Dimensionality'
Dagster Glossary code icon

Encapsulate

The bundling of data with the methods that operate on that data.
An image representing the data engineering concept of 'Encapsulate'
Dagster Glossary code icon

Enrich

Enhance data with additional information from external sources.
An image representing the data engineering concept of 'Enrich'

Export

Extract data from a system for use in another system or application.
An image representing the data engineering concept of 'Export'
Dagster Glossary code icon

Graph Theory

A powerful tool to model and understand intricate relationships within our data systems.
An image representing the data engineering concept of 'Graph Theory'
Dagster Glossary code icon

Idempotent

An operation that produces the same result each time it is performed.
An image representing the data engineering concept of 'Idempotent'
Dagster Glossary code icon

Index

Create an optimized data structure for fast search and retrieval.
An image representing the data engineering concept of 'Index'
Dagster Glossary code icon

Integrate

Combine data from different sources to create a unified view for analysis or reporting.
An image representing the data engineering concept of 'Integrate'
Dagster Glossary code icon

Lineage

Understand how data moves through a pipeline, including its origin, transformations, dependencies, and ultimate consumption.
An image representing the data engineering concept of 'Lineage'
Dagster Glossary code icon

Linearizability

Ensure that each individual operation on a distributed system appear to occur instantaneously.
An image representing the data engineering concept of 'Linearizability'
Dagster Glossary code icon

Materialize

Executing a computation and persisting the results into storage.
An image representing the data engineering concept of 'Materialize'
Dagster Glossary code icon

Memoize

Store the results of expensive function calls and reusing them when the same inputs occur again.
An image representing the data engineering concept of 'Memoize'
Dagster Glossary code icon

Merge

Combine data from multiple datasets into a single dataset.
An image representing the data engineering concept of 'Merge'
Dagster Glossary code icon

Model

Create a conceptual representation of data objects.
An image representing the data engineering concept of 'Model'

Monitor

Track data processing metrics and system health to ensure high availability and performance.
An image representing the data engineering concept of 'Monitor'
Dagster Glossary code icon

Named Entity Recognition

Locate and classify named entities in text into pre-defined categories.
An image representing the data engineering concept of 'Named Entity Recognition'
Dagster Glossary code icon

Parse

Interpret and convert data from one format to another.
Dagster Glossary code icon

Partition

Data partitioning is a technique that data engineers and ML engineers use to divide data into smaller subsets for improved performance.
An image representing the data engineering concept of 'Partition'
Dagster Glossary code icon

Prep

Transform your data so it is fit-for-purpose.
An image representing the data engineering concept of 'Prep'
Dagster Glossary code icon

Preprocess

Transform raw data before data analysis or machine learning modeling.
Dagster Glossary code icon

Primary Key

A unique identifier for a record in a database table that helps maintain data integrity.
An image representing the data engineering concept of 'Primary Key'
Dagster Glossary code icon

Replicate

Create a copy of data for redundancy or distributed processing.

Scaling

Increasing the capacity or performance of a system to handle more data or traffic.
Dagster Glossary code icon

Schema Inference

Automatically identify the structure of a dataset.
An image representing the data engineering concept of 'Schema Inference'
Dagster Glossary code icon

Schema Mapping

Translate data from one schema or structure to another to facilitate data integration.
Dagster Glossary code icon

Secondary Index

Improve the efficiency of data retrieval in a database or storage system.
An image representing the data engineering concept of 'Secondary Index'
Dagster Glossary code icon

Software-defined Asset

A declarative design pattern that represents a data asset through code.
An image representing the data engineering concept of 'Software-defined Asset'

Synchronize

Ensure that data in different systems or databases are in sync and up-to-date.
Dagster Glossary code icon

Validate

Check data for completeness, accuracy, and consistency.
An image representing the data engineering concept of 'Validate'
Dagster Glossary code icon

Version

Maintain a history of changes to data for auditing and tracking purposes.
An image representing the data engineering concept of 'Version'