Data Monitoring | Dagster Glossary

Back to Glossary Index

Data Monitoring

Track data processing metrics and system health to ensure high availability and performance.

Data monitoring definition:

Data monitoring is the process of observing and measuring data processing systems to ensure they are working correctly and efficiently. This involves tracking key performance indicators (KPIs), identifying issues, and taking corrective actions to optimize the pipeline's performance.

In the context of modern data pipelines, data monitoring can involve monitoring the pipeline's health, data quality, and performance metrics. This includes tracking things like data volume, processing times, error rates, and system resource utilization.

Practical examples of data monitoring in Python include using libraries like Prometheus or Grafana to collect and visualize pipeline metrics in real time. These tools allow you to track KPIs like throughput, latency, and error rates and set up alerts to notify you when metrics fall outside of predefined thresholds.

Another example of data monitoring is using log analysis tools like ELK stack (Elasticsearch, Logstash, and Kibana) to monitor system logs for errors or anomalies. These tools can help you identify issues and diagnose performance problems in real time.

Overall, data monitoring is critical to ensuring the integrity and reliability of modern data pipelines, and it requires a combination of automated monitoring tools and human oversight to be effective.

Coding practices for data monitoring

In Python, there are several coding practices associated with data monitoring to identify issues or anomalies are identified and addressed in a timely manner.

Use monitoring libraries: Python has several libraries that are designed for monitoring data, such as StatsD, Graphite, and Prometheus. These libraries provide tools for tracking metrics, setting up dashboards, and alerting on anomalies. Using these libraries can help ensure that monitoring is consistent and reliable across different projects.

Use logging and exception handling: In Python, logging and exception handling are important tools for monitoring data. By logging events and exceptions, developers can get a clear picture of what's happening in the system, and can identify any issues that arise. This can help with troubleshooting and identifying patterns of behavior that might indicate a problem.

Define thresholds and alerts: To monitor data effectively, it's important to define thresholds and alerts that can trigger notifications when certain conditions are met. This can be done using Python libraries like Prometheus and StatsD, or by writing custom code. By defining thresholds and alerts, developers can ensure that they are notified of issues as soon as they arise, and can take action to address them before they become serious problems.

Implement automated testing: Automated testing is an important part of data monitoring in Python. By setting up automated tests, developers can ensure that data is being processed correctly, and that any issues are caught early. This can help with identifying issues before they impact end-users, and can improve the overall quality of the system.


Other data engineering terms related to
Data Management:
Dagster Glossary code icon

Append

Adding or attaching new records or data items to the end of an existing dataset, database table, file, or list.
An image representing the data engineering concept of 'Append'

Archive

Move rarely accessed data to a low-cost, long-term storage solution to reduce costs. Store data for long-term retention and compliance.
An image representing the data engineering concept of 'Archive'
Dagster Glossary code icon

Augment

Add new data or information to an existing dataset to enhance its value.
An image representing the data engineering concept of 'Augment'

Auto-materialize

The automatic execution of computations and the persistence of their results.
An image representing the data engineering concept of 'Auto-materialize'

Backup

Create a copy of data to protect against loss or corruption.
An image representing the data engineering concept of 'Backup'
Dagster Glossary code icon

Batch Processing

Process large volumes of data all at once in a single operation or batch.
An image representing the data engineering concept of 'Batch Processing'
Dagster Glossary code icon

Cache

Store expensive computation results so they can be reused, not recomputed.
An image representing the data engineering concept of 'Cache'
Dagster Glossary code icon

Categorize

Organizing and classifying data into different categories, groups, or segments.
An image representing the data engineering concept of 'Categorize'
Dagster Glossary code icon

Checkpointing

Saving the state of a process at certain points so that it can be restarted from that point in case of failure.
An image representing the data engineering concept of 'Checkpointing'
Dagster Glossary code icon

Deduplicate

Identify and remove duplicate records or entries to improve data quality.
An image representing the data engineering concept of 'Deduplicate'

Deserialize

Deserialization is essentially the reverse process of serialization. See: 'Serialize'.
An image representing the data engineering concept of 'Deserialize'
Dagster Glossary code icon

Dimensionality

Analyzing the number of features or attributes in the data to improve performance.
An image representing the data engineering concept of 'Dimensionality'
Dagster Glossary code icon

Encapsulate

The bundling of data with the methods that operate on that data.
An image representing the data engineering concept of 'Encapsulate'
Dagster Glossary code icon

Enrich

Enhance data with additional information from external sources.
An image representing the data engineering concept of 'Enrich'

Export

Extract data from a system for use in another system or application.
An image representing the data engineering concept of 'Export'
Dagster Glossary code icon

Graph Theory

A powerful tool to model and understand intricate relationships within our data systems.
An image representing the data engineering concept of 'Graph Theory'
Dagster Glossary code icon

Idempotent

An operation that produces the same result each time it is performed.
An image representing the data engineering concept of 'Idempotent'
Dagster Glossary code icon

Index

Create an optimized data structure for fast search and retrieval.
An image representing the data engineering concept of 'Index'
Dagster Glossary code icon

Integrate

Combine data from different sources to create a unified view for analysis or reporting.
An image representing the data engineering concept of 'Integrate'
Dagster Glossary code icon

Lineage

Understand how data moves through a pipeline, including its origin, transformations, dependencies, and ultimate consumption.
An image representing the data engineering concept of 'Lineage'
Dagster Glossary code icon

Linearizability

Ensure that each individual operation on a distributed system appear to occur instantaneously.
An image representing the data engineering concept of 'Linearizability'
Dagster Glossary code icon

Materialize

Executing a computation and persisting the results into storage.
An image representing the data engineering concept of 'Materialize'
Dagster Glossary code icon

Memoize

Store the results of expensive function calls and reusing them when the same inputs occur again.
An image representing the data engineering concept of 'Memoize'
Dagster Glossary code icon

Merge

Combine data from multiple datasets into a single dataset.
An image representing the data engineering concept of 'Merge'
Dagster Glossary code icon

Model

Create a conceptual representation of data objects.
An image representing the data engineering concept of 'Model'
Dagster Glossary code icon

Named Entity Recognition

Locate and classify named entities in text into pre-defined categories.
An image representing the data engineering concept of 'Named Entity Recognition'
Dagster Glossary code icon

Parse

Interpret and convert data from one format to another.
Dagster Glossary code icon

Partition

Data partitioning is a technique that data engineers and ML engineers use to divide data into smaller subsets for improved performance.
An image representing the data engineering concept of 'Partition'
Dagster Glossary code icon

Prep

Transform your data so it is fit-for-purpose.
An image representing the data engineering concept of 'Prep'
Dagster Glossary code icon

Preprocess

Transform raw data before data analysis or machine learning modeling.
Dagster Glossary code icon

Replicate

Create a copy of data for redundancy or distributed processing.

Scaling

Increasing the capacity or performance of a system to handle more data or traffic.
Dagster Glossary code icon

Schema Inference

Automatically identify the structure of a dataset.
An image representing the data engineering concept of 'Schema Inference'
Dagster Glossary code icon

Schema Mapping

Translate data from one schema or structure to another to facilitate data integration.
Dagster Glossary code icon

Secondary Index

Improve the efficiency of data retrieval in a database or storage system.
An image representing the data engineering concept of 'Secondary Index'
Dagster Glossary code icon

Software-defined Asset

A declarative design pattern that represents a data asset through code.
An image representing the data engineering concept of 'Software-defined Asset'

Synchronize

Ensure that data in different systems or databases are in sync and up-to-date.
Dagster Glossary code icon

Validate

Check data for completeness, accuracy, and consistency.
An image representing the data engineering concept of 'Validate'
Dagster Glossary code icon

Version

Maintain a history of changes to data for auditing and tracking purposes.
An image representing the data engineering concept of 'Version'